In search of new demographic representations: the field of population grids in the era of machine learning
DOI:
https://doi.org/10.20947/S0102-3098a0268Keywords:
Population Grids, Census data, Spatial distribution of the population, Remote sensing, Symptomatic variables., Spatial modeling, Machine LearningAbstract
The population distribution on the Earth's surface reveals a variety of spatial patterns that reflect sociodemographic processes related to the historical-geographical dynamics that produced them. Population grids have gained prominence as a source of population data, involving estimates and distribution in small areas. Each population grid consists of cells of specific sizes, covering the entire globe or specific local territories. This work presents a commented literature review in the field of these population representations, specifically in the distribution and volume of the population, and the importance of spatial auxiliary variables, referred to here as symptomatic variables. These play a crucial role in building reality-based models, both locally and globally, using various methods, including Machine Learning. The main initiatives in the field, available global products, and the technical foundations of the main methodologies are also highlighted. Additionally, the paper discusses limitations, precautions, and new opportunities resulting from the creation of these population grids.
Downloads
References
ALVAREZ, G. O. Estimación de población en áreas menores mediante variables sintomáticas: una aplicación para los departamentos de la República Argentina (1991 y 1996). Celade - División de Población, Cepal, 2001.
ALVES, J. E. D.; CAVENAGHI, S. Tendências demográficas, dos domicílios e das famílias no Brasil. Aparte: Inclusão Social em Debate, v. 24, p. 1-33, 2012.
AMARAL, S. et al. Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data. Computers, Environment and Urban Systems, v. 29, n. 2, p. 179-195, 2005.
AMARAL, S. et al. Using remote sensing and census tract data to improve representation of population spatial distribution: case studies in the Brazilian Amazon. Population and Environment, v. 34, p. 142-170, 2012.
ANAZAWA, T. M.; CARMO, R. L. O risco construído: reflexões sobre o desastre ocorrido em Mariana, estado de Minas Gerais, em 2015. Revista Vértices, v. 23, n. 1, p. 234-255, 2021.
ARCHILA, B. M. F. et al. A pixel level evaluation of five multitemporal global gridded population datasets: a case study in Sweden, 1990-2015. Population and Environment, v. 42, p. 255-277, 2020.
BALK, D. L. et al. Determining global population distribution: methods, applications and data. Advances in Parasitology, v. 62, p. 119-156, 2006.
BALK, D. et al. The distribution of people and the dimension of place: methodologies to improve the global estimation of urban extents. In: INTERNATIONAL SOCIETY FOR PHOTOGRAMMETRY AND REMOTE SENSING. Proceedings […]. Tempe, Arizona, 2005. p. 14-16.
BREIMAN, L. Random forests. Machine Learning, v. 45, p. 5-32, 2001.
BRITO, L. P. G.; CAVENAGHI, S.; JANNUZZI, P. Estimativas e projeções populacionais para pequenos domínios: uma avaliação da precisão para municípios do Rio de Janeiro em 2000 e 2007. Revista Brasileira de Estudos de População, v. 27, n. 1, p. 35-57, 2010.
BRUCE, A.; BRUCE, P. Estatística prática para cientistas de dados. Alta Books, 2019.
BUENO, M. C. D. Grade estatística: uma abordagem para ampliar o potencial analítico de dados censitários. Tese (Doutorado em Demografia) - Universidade Estadual de Campinas (Unicamp), Campinas, 2014.
CABRERA, M. Estimación de población en áreas menores con métodos que utilizan variables sintomáticas. Uruguay: Comisión Sectorial de Población, 2011.
CALIAN, V.; ZUPPARDO, M.; HARDARSON, O. Machine learning estimation of the resident population. Statistical Journal of the IAOS, v. 39, n. 4, p. 947-960, 2023.
CALKA, B.; BIELECKA, E. GHS-POP accuracy assessment: Poland and Portugal case study. Remote Sensing, v. 12, n. 7, p. 1105, 2020.
CAMPOS, J. et al. Population estimates from orbital data of medium spatial resolution: applications for a Brazilian municipality. Sustainability, v. 12, n. 9, p. 3565, 2020.
CARNEIRO-FREIRE, S. et al. Development of new open and free multi-temporal global population grids at 250 m resolution. In: ASSOCIATION OF GEOGRAPHIC INFORMATION LABORATORIES IN EUROPE (AGILE). Proceedings […]. Helsinki, Finland: AGILE, 2016.
CHEN, R. et al. Multiple global population datasets: differences and spatial distribution characteristics. ISPRS International Journal of Geo-Information, v. 9, n. 11, p. 637, 2020.
D'ANTONA, Á. O.; BUENO, M. C. D.; DAGNINO, R. S. Estimativa da população em unidades de conservação na Amazônia Legal brasileira: uma aplicação de grades regulares a partir da Contagem 2007. Revista Brasileira de Estudos de População, v. 30, n. 2, p. 401-428, 2013.
D'ANTONA, A.; VANWEY, L.; LUDEWIGS, T. Polarização da estrutura fundiária e mudanças no uso e na cobertura da terra na Amazônia. Acta Amazonica, v. 41, p. 223-232, 2011.
DE SHERBININ, A. et al. Population and environment. Annual Review of Environmente and Resources, v. 32, p. 345-373, 2007.
DE MATTOS, A. C. H.; BERTOLOTTO, G. M. M. Assessing the quality of gridded population data for quantifying the population living in deprived communities. In: CONFERENCE ON NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 34. Proceedings […]. Vancouver, Canada: NeurIPS, 2020.
DEICHMANN, U.; BALK, D.; YETMAN, G. Transforming population data for interdisciplinary usages: from census to grid. Washington, DC: Center for International Earth Science Information Network, 2001.
DMOWSKA, A. Dasymetric modelling of population distribution-large data approach. Quaestiones Geographicae, v. 38, n. 1, p. 15-27, 2019.
DÓRIA, V. E. M.; AMARAL, S.; MONTEIRO, A. M. V. Estimativa e distribuição espacial de população urbana com imagens de satélites de luzes noturnas: um estudo para a região metropolitana de São Paulo, Brasil, com o sensor visible/infrared imaging radiometer suite (VIIRS). Geografia, v. 41, n. 3, p. 527-548, 2016.
DOXSEY-WHITFIELD, E. et al. Taking advantage of the improved availability of census data: a first look at the gridded population of the world, version 4. Papers in Applied Geography, v. 1, n. 3, p. 226-234, 2015.
EICHER, C. L.; BREWER, C. A. Dasymetric mapping and areal interpolation: implementation and evaluation. Cartography and Geographic Information Science, v. 28, n. 2, p. 125-138, 2001.
ESQUIVEL, E. A. C. Variables sintomáticas en las estimaciones poblacionales a nivel cantonal em Costa Rica. Notas de Población, n. 71, p. 51-72, 2001.
EUROPEAN COMISSION. GHSL data package 2023. 2023. Disponível em: https://ghsl.jrc.ec.europa.eu/documents/GHSL_Data_Package_2023.pdf?t=168 3540422 Acesso em: 02 set. 2022.
FEITOSA, F. F. Big data e urban analytics à brasileira: questões inerentes a um país profundamente desigual. Revista de Morfologia Urbana, v. 8, n. 1, artigo e00141, 2020.
FERREIRA, K. R. et al. Earth observation data cubes for Brazil: requirements, methodology and products. Remote Sensing, v. 12, n. 24, p. 4033, 2020.
FLORCZYK, A. J. et al. GHSL data package 2019. Luxembourg: EU, 2019.
FRANÇA, V. O. Avaliação de métodos dasimétricos para estimativa populacional em pequenas áreas. Dissertação (Mestrado em Estudos Populacionais e Pesquisas Sociais) - Escola Nacional de Ciências Estatísticas (Ence), Rio de Janeiro, 2012.
FRYE, C. Esri’s 2016 world population estimate methodology. Redlands, CA: Esri, 2017. ( Esri® White Paper).
FULLER, C. E. Public health applications of remote sensing. 4th Annual Earth Resources Program Review. Volume 1 - National Aeronautics and Space Programs. Houston, TX: Nasa, 1972.
GOODCHILD, M. F.; JANELLE, D. G. (Ed.). Spatially integrated social science. Oxford University Press, 2004.
GOODCHILD, M. F.; LAM, N. S. Areal interpolation: a variant of the traditional spatial problem. Geo-processing, v. 1, n. 3, p. 297-312, 1980.
HAY, S. I. et al. Urbanization, malaria transmission and disease burden in Africa. Nature Reviews Microbiology, v. 3, n. 1, p. 81-90, 2005.
HIERINK, F. et al. Differences between gridded population data impact measures of geographic access to healthcare in sub-Saharan Africa. Communications Medicine, v. 2, n. 1, p. 117, 2022.
HOGAN, D. J. Crescimento demográfico e meio ambiente. Revista Brasileira de Estudos de População, v. 8, n. 1/2, p. 61-71, 1991.
HOGAN, D. J. Mobilidade populacional e meio ambiente. Revista Brasileira de Estudos de População, v. 15, n. 2, p. 83-92, 1998.
HU, W. et al. Mapping missing population in rural India: a deep learning approach with satellite imagery. In: AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY. Proceedings […]. New York: Association for Computing Machinery, 2019.
HUANG, X. et al. Sensing population distribution from satellite imagery via deep learning: model selection, neighboring effects, and systematic biases. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 14, p. 5137-5151, 2021.
IBGE - Instituto Brasileiro de Geografia e Estatística. Grade Estatística. 2016. Disponível em: ftp://geoftp.ibge.gov.br/malhas_digitais/censo_2010/grade_estatistica/Grade_Estatistica.pdf. Acesso em: 04 ago. 2021.
JANNUZZI, P. M. Cenários futuros e projeções populacionais para pequenas áreas: método e aplicação para distritos paulistanos 2000-2010. Revista Brasileira de Estudos de População, v. 24, n. 1, p. 109-137, 2007.
KAMPEL, S. A. Geoinformação para estudos demográficos: representação espacial de dados de população na Amazônia brasileira. Tese (Doutorado em Engenharia) - Escola Politécnica da Universidade de São Paulo (USP), São Paulo, 2003.
KEMPER, T.; MELCHIORRI, M.; EHRLICH, D. Global human settlement layer. Luxembourg: Publications Office of the European Union, 2021.
KUFFER, M. et al. The missing millions in maps: exploring causes of uncertainties in global gridded population datasets. ISPRS International Journal of Geo-Information, v. 11, n. 7, p. 403, 2022. Disponível em: https://doi.org/10.3390/ijgi11070403 Acesso em: maio 2024.
KUGLER, T. A. et al. People and pixels 20 years later: the current data landscape and research trends blending population and environmental data. Population and Environment, v. 41, p. 209-234, 2019.
LAITURI, M. et al. SDG Indicator 11.3. 1 and secondary cities: an analysis and assessment. ISPRS International Journal of Geo-Information, v. 10, n. 11, p. 713, 2021.
LANDSAT. Landsat’s enduring legacy: pioneering global land observation from space. Landsat Legacy Team. American Society for Photogrammetry and Remote Sensing. Digital Free, 2017.
LANGFORD, M. An evaluation of small area population estimation techniques using open access ancillary data. Geographical Analysis, v. 45, n. 3, p. 324-344, 2013.
LEYK, S. et al. The spatial allocation of population: a review of large-scale gridded population data products and their fitness for use. Earth System Science Data, v. 11, n. 3, p. 1385-1409, 2019.
LINARD, C.; TATEM, A. J.; GILBERT, M. Modelling spatial patterns of urban growth in Africa. Applied Geography, v. 44, p. 23-32, 2013.
LIVERMAN, D. et al. People and pixels: linking remote sensing and social science. Washington, DC: National Academies Press, 1998.
LLOYD, C. T.; SORICHETTA, A. l.; TATEM, A. J. High resolution global gridded data for use in population studies. Scientific Data, v. 4, n. 1, p. 1-17, 2017.
MENNIS, J.; HULTGREN, T. Intelligent dasymetric mapping and its application to areal interpolation. Cartography and Geographic Information Science, v. 33, n. 3, p. 179-194, 2006.
MESA, S. Silencio administrativo. La pobreza en el laberinto burocratico. Barcelona: Anagtrama, 2019.
NADALIN, S. O. A demografia numa perspectiva histórica. Abep, 1994.
NAGLE, N. N. et al. Dasymetric modeling and uncertainty. Annals of the Association of American Geographers, v. 104, n. 1, p. 80-95, 2014.
NEVES, A. K. et al. Assessment of TerraClass and MapBiomas data on legend and map agreement for the Brazilian Amazon biome. Acta Amazonica, v. 50, p. 170-182, 2020.
ONU-HABITAT. Diretrizes internacionais para planejamento urbano e territorial. Nairóbi: ONU-Habitat, 2015.
ONU-HABITAT. Nova agenda urbana. Declaração de Quito sobre Cidades e Assentamentos Humanos Sustentáveis. ONU-Habitat, 2017.
OPENSHAW, S. Ecological fallacies and the analysis of areal census data. Environment and Planning A, v. 16, n. 1, p. 17-31, 1984.
POPGRID. Leaving no one off the map: a guide for gridded population data for sustainable development. POPGRID Data Collaborative, 2020. Disponível em: https://www.popgrid.org/sites/default/files/documents/Leaving_no_one_off_the_ map.pdf Acesso em: 10 jul. 2023.
REED, F. J. et al. Gridded population maps informed by different built settlement products. Data, v. 3, n. 3, p. 33, 2018.
ROBINSON, C.; HOHMAN, F.; DILKINA, B. A deep learning approach for population estimation from satellite imagery. In: ACM SIGSPATIAL WORKSHOP ON GEOSPATIAL HUMANITIES, 1. Proceedings […]. New York: Association for Computing Machinery, 2017.
SCHIAVINA, M. et al. GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC), 2023. Disponível em: http://data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe Acesso em: 20 jul. 2023.
SCHUG, F. et al. Gridded population mapping for Germany based on building density, height and type from Earth observation data using census disaggregation and bottom-up estimates. PloS One, v. 16, n. 3, article e0249044, 2021.
SEADE - Fundação Sistema Estadual de Análise de Dados. Banco de Dados de Informações dos Municípios Paulistas. São Paulo, 2023.
SEGAUD, M. Antropologia do espaço: habitar, fundar, distribuir, transformar. São Paulo: Sesc, 2016.
SEE, L. et al. Crowdsourcing, citizen science or volunteered geographic information? The current state of crowdsourced geographic information. ISPRS International Journal of Geo-Information, v. 5, n. 55, 2016.
SEMENOV-TIAN-SHANSKY, B. Russia: territory and population. A perspective on the 1926 Census. Geographical Review, v. 18, p. 616-640, 1928.
SHRYOCK, H. S.; SIEGEL, J. S.; LARMON, E. A. The methods and materials of demography. US Bureau of the Census, 1975.
SILVA, D. M. VALiN-POP - uma grade populacional adaptada para a Região Metropolitana do Vale do Paraíba e Litoral Norte, SP. Dissertação (Mestrado em Sensoriamento Remoto) - Instituto Nacional de Pesquisas Espaciais (Inpe), São José dos Campos, 2023.
SILVA, V. L.; REIS I. A.; REIS, E. A. Modelos de regressão para estimação de populações via imagens de satélite. Relatório Técnico. Belo Horizonte: Universidade Federal de Minas Gerais (UFMG), Departamento de Estatística, 2009. (Série Pesquisa RTP 03/2009). Disponível em: https://www.est.ufmg.br/portal/arquivos/rts/Relatorio_Tecnico_EST_publicado.p df Acesso em: 03 mar. 2023.
STEVENS, F. R. et al. Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data. PloS One, v. 10, n. 2, article e0107042, 2015.
TATEM, A. J. WorldPop, open data for spatial demography. Scientific Data, v. 4, n. 1, p. 1-4, 2017.
THOMSON, D. R. et al. How accurate are WorldPop-Global-Unconstrained gridded population data at the cell-level? A simulation analysis in urban Namibia. PloS One, v. 17, n. 7, article e0271504, 2022.
TIECKE, T. G. et al. Mapping the world population one building at a time. arXiv preprint 1712.05839, 2017.
TOBLER, W. R. Cellular geography. In: GALE, S.; OLSSON, G. (Ed.). Philosophy in geography. Dordrecht: Riedel, 1979. p. 379-386.
TOBLER, W. et al. World population in a grid of spherical quadrilaterals. International Journal of Population Geography, v. 3, n. 3, p. 203-225, 1997.
TOBLER, W. et al. The Global Demography Project. Santa Barbara, CA: National Center for Geographic Information and Analysis. Department of Geography, University of California, 1995. (Technical Report TR-95-6).
UNITED NATIONS. World population prospects 2022. United Nations, Department of Economic and Social Affairs, Population Division, 2022.
WAN, H. et al. Population downscaling using high-resolution, temporally-rich US property data. Cartography and Geographic Information Science, v. 49, n. 1, p. 18-31, 2022.
WRIGHT, J. K. A method of mapping densities of population: with Cape Cod as an example. Geographical Review, v. 26, n. 1, p. 103-110, 1936.
YETMAN, G.; DEICHMANN, U.; BALK, D. Creating a global grid of human population. In: ANNUAL ESRI INTERNATIONAL USER CONFERENCE, 20. Proceedings […]. San Diego, CA, 2000. p. 26-30.
ZHOU, Z.; WU, J.; TANG, W. Ensembling neural networks: many could be better than all. Artificial Intelligence, v. 137, n. 1-2, p. 239-263, 2002.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Brasileira de Estudos de População
This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Rebep are original and protected under the Creative Commons attribution-type license (CC-BY). This license allows you to reuse publications in whole or in part for any purpose, free of charge, even for commercial purposes. Any person or institution can copy, distribute or reuse the content, as long as the author and the original source are properly mentioned.