BR-EMS 2021 life table for the Brazilian insured population
DOI:
https://doi.org/10.20947/S0102-3098a0252Keywords:
Actuarial life tables, Death and survivorship coverages, Mortality graduation, Heligman-Pollard modelAbstract
This article presents the Brazilian private insurance market’s actuarial life tables, BR- EMS 2021. Using Bayesian inference on the parameters of the Heligman- Pollard law of mortality and data from 23 insurance groups over 15 years, totaling 3.5 billion registers, the data were corrected through a two hidden-layer neural network. The resulting tables show that the insured population exhibits lower mortality rates than the general Brazilian population, even lower than the national populations of well-developed countries such as the USA. Moreover, besides the expected gender gap in mortality rates, there is a clear distance between the death and survivorship insurance coverage groups. Likewise, the insured population characteristics mitigate well-known regional structural discrepancies in the Brazilian population, indicating that being part of the selected population of insured individuals is thus associated with a more effective protection against death than other outstanding factors such as geographic region of residence.
Downloads
References
AMERICAN ACADEMY OF ACTUARIES. Final report of the American Academy of Actuaries’ Commissioners Standard Ordinary Task Force. Philadelphia, PA, June 2002. Available in: https://www.actuary.org/sites/default/files/files/publications/CSO_taskforce_report_june2002.pdf Access in: 10 Dec. 2022.
ARMSTRONG, J. S.; COLLOPY, F. Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting, v. 8, n. 1, p. 69-80, 1992.
BELTRÃO, K. I.; SUGAHARA, S. Mortalidade dos funcionários públicos civis do Executivo por sexo e escolaridade - 1993/2014. Revista Contabilidade & Finanças, v. 28, n. 75, p. 445-464, set. /dez. 2017. Available in: https://www.revistas.usp.br/rcf/article/view/138289 Access in: 8 Jun. 2023.
BORGES, G. M. Health transition in Brazil: regional variations and divergence/convergence in mortality. Cadernos de Saúde Pública, v. 33, n. 8, 2017.
CASTRO, M. C.; GURZENDA, S.; TURRA, C. M.; KIM, S.; ANDRASFAY, T.; GOLDMAN, N. Reduction in life expectancy in Brazil after COVID-19. Nature Medicine, n. 27, p. 1629-1635, 2021. Available in: https://doi.org/10.1038/s41591-021-01437-z Access in: 8 Jun. 2023.
CHARPENTIER, A. (Ed.). Computational Actuarial Sciences with R. Chapman & Hall, 2015.
CHEN, M.-H.; QI-MAN, S. Monte Carlo estimation of bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics, v. 8, n. 1, p. 69-92, 1999. https://doi.org/10.2307/1390921
CONGDON, P. Statistical graduation in local demographic analysis and projection. Journal of the Royal Statistical Society. Series A (Statistics in Society), v. 156, n. 2, p. 237-270, 1993.
CURRIE, I. D.; DURBAN, M.; EILERS, P. H. Smoothing and forecasting mortality rates. Statistical Modelling, v. 4, n. 4, p. 279-298, 2004. https://doi.org/10.1191/1471082X04st080oa
DI LEGO, V.; TURRA, C. M.; CESAR, C. Mortality selection among adults in Brazil: the survival advantage of Air Force officers. Demographic Research, v. 37, article 41, p. 1339-1350, 2017. https://doi.org/10.4054/DemRes.2017.37.41
DOBSON, A. J.; BARNETT, A. G. An introduction to generalized linear models. 4. ed. Boca Raton, London, New York: CRC press, 2018.
FRANÇA, E. B. et al. Cause-specific mortality for 249 causes in Brazil and states during 1990-2015: a systematic analysis for the global burden of disease study 2015. Population Health Metrics, v. 15, n. 1, 2017.
GAMERMAN, D.; LOPES, H. F. Markov Chain Monte Carlo: stochastic simulation for bayesian inference. 2. ed. London: Chapman & Hall/CRC, 2006.
GLOBAL BURDEN OF DISEASE COLLABORATIVE NETWORK. Global Burden of Disease Study 2015 (GBD 2015). Life expectancy, all-cause and cause-specific mortality 1980-2015 (2015). Technical report.
GONZAGA, M. R.; LIMA, E. E. C.; QUEIROZ, B. L.; ANSILIERO, G.; FREIRE, F. H. M. A. Diferenciais de mortalidade, beneficiários do Instituto Nacional do Seguro Social do Brasil em 2015. Revista Contabilidade & Finanças, v. 33, n. 90, e1556, 2022.
HELIGMAN, L.; POLLARD, J. H. The age pattern of mortality. Journal of the Institute of Actuaries, v. 107, n. 1, p. 49-80, 1980.
HILTON, J.; DODD, E.; FORSTER J. J.; SMITH, P. W. Projecting UK mortality by using Bayesian generalized additive models. Journal of the Royal Statistical Society, Series C (Applied Statistics), v. 68, n. 1, p. 29-49, 2019.
HMD. Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies (France). Available in: www.mortality.org Access in: 10 Dec. 2022.
HYNDMAN, R. J.; SHAHID, U. M. Robust forecasting of mortality and fertility rates: a functional data approach. Computational Statistics & Data Analysis, v. 51, n. 10, p. 4942-4956, 2007. https://doi.org/10.1016/j.csda.2006.07.028
IBGE - Instituto Brasileiro de Geografia e Estatística. Tábuas completas de mortalidade - edição 2020, 2021. Available in: https://www.ibge.gov.br/estatisticas/sociais/populacao/9126-tabuas-completas-de-mortalidade.html?edicao=32297&t=resultados Access in: 10 Dec. 2022.
IBGE - Instituto Brasileiro de Geografia e Estatística. Tábuas abreviadas de mortalidade por sexo e idade: Brasil, grandes regiões e unidades da federação: 2010. Rio de Janeiro: IBGE, 2013a. Available in: https://biblioteca.ibge.gov.br/visualizacao/livros/liv65137.pdf Access in: 10 Dec. 2022.
IBGE - Instituto Brasileiro de Geografia e Estatística. Projeções de população por sexo e idade - Brasil 2000-2060 e unidades da federação 2000-2030. Rio de Janeiro: IBGE, 2013b. Available in: https://www.ibge.gov.br/estatisticas/sociais/populacao/9109-projecao-da-populacao.html?edicao=9116 Access in: 10 Dec. 2022.
JOHANSEN, R. Review of adequacy of 1983 individual annuity mortality table. Transactions of Society of Actuaries, v. 47, p. 211-249, 1995.
KIBELE, E. U. B.; KLÜSENER, S.; SCHOLZ, R. D. Regional mortality disparities in Germany: long-term dynamics and possible determinants. Kolner Zeitschrift Fur Soziologie Und Sozialpsychologie, v. 67, suppl. 1, p. 241-270, 2015.
LEE, R. The Lee-Carter method for forecasting mortality, with various extensions and applications. North American Actuarial Journal, v. 4, n. 1, p. 80-91, 2000.
LIDDELL, F. Simple exact analysis of the standardised mortality ratio. Journal of Epidemiology & Community Health, v. 38, n. 1, p. 85-88, 1984.
OLIVEIRA, M.; FRISCHTAK, R.; RAMIREZ, M.; BELTRÃO, K.; PINHEIRO, S. Brazilian mortality and survivorship life tables: insurance market experience - 2010. Rio de Janeiro: Fundação Escola Nacional de Seguros - Funenseg, 2012.
OLIVEIRA, M. M. C.; RAMIREZ, M. R.; FRISCHTAK, R. M.; BORGES, R. B. R.; COSTA, B.; PEDROSO, R. C. Tábuas de mortalidade para a população brasileira de segurados. Revista Brasileira de Estudos de População, v. 33, n. 3, p. 653-677, 2016.
OLIVIERI, A. Uncertainty in mortality projections: an actuarial perspective. Insurance: Mathematics and Economics, v. 29, n. 2, p. 231-245, 2001.
QUEIROZ, B. L.; LIMA, E. E. C.; FREIRE, F. H. M. A.; GONZAGA, M. R. Temporal and spatial trends of adult mortality in small areas of Brazil, 1980- 2010. Genus, v. 76, n. 36, 2020.
QUEIROZ, B. L.; GONZAGA, M. R.; VASCONCELOS, A. M. N.; LOPES, B. T.; ABREU, D. M. X. Comparative analysis of completeness of death registration, adult mortality and life expectancy at birth in Brazil at the subnational level. Population Health Metrics, v. 18, suppl. 1, 2020.
RIBEIRO, M. M.; TURRA, C. M.; PINTO, C. C. X. Mortalidade adulta por nível de escolaridade em São Paulo: análise comparativa a partir de diferentes estratégias metodológicas. Revista Brasileira de Estudos de População, v. 38, 2021. Available in: dx.doi.org/10.20947/S0102-3098a0139. Access in: 10 Dec. 2022.
SOCIETY OF ACTUARIES. Report of the Committee to Recommend a New Mortality Table Basis for Individual Annuity Valuation (Derivation of the 1983 Table a). Transactions of the Society of Actuaries, vol. 33. (1981) Table 22. Available in: http://www.soa.org/Library/Research/Transactions-Of-Society-Of-Actuaries/1981/January/tsa81v3325.pdf Access in: Apr. 2013.
SIVIERO, P. C. L.; SOUZA, L. G.; MACHADO, C. J. Diferenciais de mortalidade por sexo no município de São Paulo em 2005 e 2016: contribuição dos grupos etários e das principais causas de óbito. Revista Brasileira de Estudos de População, v. 36, 2019. Available in: https://doi.org/10.20947/S0102-3098a0099 Access in: 10 Dec. 2022.
TUKEY, J. W. Exploratory data analysis. Reading: Addison-Wesley Publishing Company, 1977.
UN - United Nations. Department of Economic and Social Affairs, Population Division. World population prospects: the 2022 revision, custom data acquired via website. 2022. Available in: https://population.un.org/wpp/. Access in: 10 Dec. 2022.
VAN ROSSUM, G.; DRAKE JR., F. L. Python tutorial. Technical Report CS-R9526. Amsterdam: Centrum voor Wiskunde en Informatica (CWI), May 1995.
WEST, M.; HARRISON, J. Bayesian forecasting and dynamic models. 2. ed. Springer, 1997.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Brasileira de Estudos de População
This work is licensed under a Creative Commons Attribution 4.0 International License.
Papers published in Rebep are original and protected under the Creative Commons attribution-type license (CC-BY). This license allows you to reuse publications in whole or in part for any purpose, free of charge, even for commercial purposes. Any person or institution can copy, distribute or reuse the content, as long as the author and the original source are properly mentioned.