Model migration schedules: boundaries and applications

Authors

DOI:

https://doi.org/10.20947/S0102-3098a0101

Keywords:

Rogers-Castro model, Age profile of migration, Brazil

Abstract

Migration is a highly selective demographic event by age as well as across age groups. The need to estimate migration patterns as input for demographic projections motivated Andrei Rogers and his collaborators to develop what became known as the Rogers-Castro model, or migration model functions. This paper aims to critically discuss the model as well as its limits and potential application in demographic studies. Despite describing migratory patterns by age reasonably well, the difficulty of estimation and the instability of the parameters become obstacles to the application of the model. Despite its limitations, it’s analytical and projection advantages have not yet been surpassed, thus remaining a good predictor of the migration function pattern in situations of scarce or unreliable data. Finally, the Rogers-Castro model performs well for
describing domestic migration on a national scale from the 2010 Brazilian Demographic Census. Other studies, on smaller territorial units or over time, with alternative sources, are discussed as potential applications of the model in demographic studies.

Downloads

Download data is not yet available.

Author Biographies

Reinaldo Onofre Santos, CEDEPLAR-UFMG

Doutor em Demografia (CEDEPLAR-UFMG) Assessor da Secretaria Municipal de Planejamento, Orçamento e Gestão da Prefeitura de Belo Horizonte (SMPOG-PBH)

Alisson Flávio Barbieri, CEDEPLAR-UFMG

Doutor em City and Regional Planning (University of North Carolina at Chapel Hill) e Professor Associado do Departamento de Demografia e Pesquisador do Centro de Desenvolvimento e Planejamento Regional (CEDEPLAR-UFMG)

References

AMARAL, E. F. L. Funções de migração por idade e caracterização de migrantes das microrregiões de Goiás e Distrito Federal. Dissertação (Mestrado) – Centro de Desenvolvimento e Planejamento Regional (Cedeplar), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 2002.

AMARAL, E. F. L. Improvements of techniques to estimate migration rates: an application with brazilian census data. Population Review, v. 47, n. 2, p. 1-24, 2008.

AMARAL, E. F. L.; RIOS-NETO, E. L.; POTTER, J. E. The influence of internal migration on male earnings in Brazil, 1970-2000. Migration and Development, v. 5, n. 1, p. 55-78, 2016.

BELL, M. et al. Internal migration and development: comparing migration intensities around the globe. Population and Development Review, v. 41, n. 1, p. 33-58, 2015.

BELTRÃO, K. I.; HENRIQUES, M. H. F. Modelagem da migração líquida rural-urbana no Brasil: décadas de 1960/1970 e 1970/1980. Previdência em Dados, Rio de Janeiro, v. 2, n. 3, p. 23-36, 1987.

BERNARD, A.; BELL, M.; CHARLES-EDWARDS, E. Improved measures for the cross-national comparison of ages profiles of internal migration. Population Studies, v. 68, n. 2, p. 179-195, 2014a.

BERNARD, A.; BELL, M.; CHARLES-EDWARDS, E. Life-course transitions and the age profile of internal migration. Population and Development Review, v. 40, n. 2, p. 213-239, 2014b.

CASTRO, L.; ROGERS, A. Migration age pattern: measurement and analysis. Laxemburg, Austria: International Institute for Applied System Analysis, 1979 (IIASA Working Paper, 79-16).

CASTRO, L.; ROGERS, A. Model migration schedules: a simplified formulation and an alternative parameter estimation method. Laxenburg, Austria: International Institute for Applied Systems Analysis, 1981. (IIASA Working Paper, 81-63).

CASTRO, L.; ROGERS, A. What the age composition of migrants can tell us. Laxenburg, Austria: International Institute for Applied Systems Analysis, 1984 (Research Report, 85-3).

COALE, A. J.; MCNEIL, D. R. The distribution by age of the frequency of first marriage in a female cohort. Journal of the American Statistical Association, v. 67, n. 340, p. 743-749, December 1972.

CONGDON, P. Models for migration age schedules: a Bayesian perspective with an application to flows between Scotland and England. In: RAYMER, J.; WILLEKENS, F. International migration in Europe: data, models and estimates. Chichester-UK: John Willey & Sons, Ltd, 2008. p. 193-204.

ELZHOV, T.; MULLER, K.; BOLKER, B. R interface to the Levenberg-Marquardt nonlinear leastsquares algorithm found in MINPACK. Plus Support for Bounds, 2010.

JANUZZI, P. de M. Perfis etários da migração por motivo e acompanhantes da mudança: evidências empíricas para São Paulo entre 1980 e 1993. Revista Brasileira de Estudos de População, Brasília, v. 15, n. 2, p. 19-43, 1998.

LITTLE, J.; DORRINGTON, R. The multi-exponential model migration schedule. In: MOULTRIE, T. et al. Tools for demographic estimation. Paris: International Union for the Scientific Study of Population, 2013. p. 390-402.

LITTLE, J.; ROGERS, A. What can the age composition of a population tell us about the age composition of its out-migrants? Population, Space and Place, v. 13, p. 23-39, 2007.

MACHADO, C. C. Projeções multirregionais da população: o caso brasileiro (1980-2020). Tese (Doutorado) – Centro de Desenvolvimento e Planejamento Regional (Cedeplar), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 1993.

MCNEIL, D. R.; TRUSSEL, J.; TURNER, J. C. Spline interpolation of demographic data. Demography, v. 14, n. 2, p. 245-252, May 1977.

MULDER, C. H.; WAGNER, M. Migration and marriage in the life course: a method for studying synchronized events. European Journal of Population, v. 9, p. 55-76, 1993.

PRESTON, S. H.; HEUVELINE, P.; GUILLOT, M. Demography: measuring and modeling population processes. Oxford: Blackwell Publishing, 2001.

R CORE TEAM. R: a language and environment for statistical computing. Vienna, Austria, 2017. Disponivel em: https://www.R-project.org/.

RAYMER, J.; ROGERS, A. Applying model migration schedules to represent age-specific migration flows. In: RAYMER, J.; WILLEKENS, F. International migration in Europe: data, models and estimates. Chichester, England: John Wiley & Sons Ltd, 2008. p. 175-191.

ROGERS, A. Demometrics of migration and settlement. In: ROGERS, A.; WILLEKENS, F. Migration and settlement: measurement and analysis. Laxemburg, Austria: International Institute for Applied System Analysis, 1978. p. 83-109.

ROGERS, A.; CASTRO, L. Model migration schedules. Laxemburg, Austria: International Institute for Applied Systems Analysis,1981. (Research Report, 81-30)

ROGERS, A.; CASTRO, L.; LEA, M. Model migration schedules: three alternative linear parameters estimation methods. Mathematical Population Studies, v. 12, p. 17-38, 2005.

ROGERS, A.; LITTLE, J.; RAYMER, J. The indirect estimation of migration: methods for dealing with irregular, inadequate and missing data. Dordrecht: Springer, 2010.

ROGERS, A.; RAQUILLET, R.; CASTRO, L. Model migration schedules and their applications. Laxemburg, Austria: International Institute for Applied Systems Analysis, 1977. (Research Memoranda, 77-57).

ROGERS, A.; RAYMER, J. Fitting observed demographic rates with the multiexponential model schedule: an assessment of two estimation programs. Review of Urban & Regional Development Studies, v. 11, n. 1, p. 1-10, 1999.

ROGERS, A.; WATKINS, J. General versus elderly interstate migration and population redistribution in the United States. Research on Aging, v. 9, n. 4, p. 483-529, 1987.

ROGERS, A.; WILLEKENS, F.; LEDENT, J. Migration and settlement: a multiregional comparative study. In: ROGERS, A. Multiregional demography: four essays. Laxenburg, Austria: International Institute for Applied Systems Analysis, 1984. p. 88.

WILLEKENS, F. Understanding the interdependence between parallel careers. In: SIEGERS, J. J.; DE JONG-GIERVELD, J.; VAN IMHOFF, E. Female labour market behaviour and fertility: a rational choice approach. Berlin: Springer, 1991. p. 2-31.

WILSON, T. Model migration schedules incorporating student migration peaks. Demographic Research, Rostock, v. 23, n. 8, p. 191-222, July 2010.

Published

2019-12-26

How to Cite

Santos, R. O., & Barbieri, A. F. (2019). Model migration schedules: boundaries and applications. Brazilian Journal of Population Studies, 36, 1–25. https://doi.org/10.20947/S0102-3098a0101

Issue

Section

Original Articles